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ABSTRACT .

The Biot-Tolstoy (B-T) exact impulse solution of diffrac-

tion by an infinite half-plane is compared to the usual f ;

‘Helmholtz-Kirchhoff (H-K) integral formulation and to the exact
continuous wave (CW) solution of Macdonald. For backscatter
the B-T and H-K solutions are found to differ significantly,

especially near the surface of the half-plane, where the B-T

il B i il e s - it

solution gives close agreement with experiment. For forward

dabadaliib o, - et o

scatter the two exact solutions and experimental data are in

agreement. B-T is found to agree well with measurements of

btk kit fdkd

diffraction by a barrier perpendicular to a rigid base. By

considering source and sourre image in the base separately the

concept of "image of the source in the barrier" is found to be -

unnecessary. Use of the time domain form of the B-T solution
in calculating the forward diffraction near a corner and be- i
hind a thin strip is shown to give results which agree well ;
with measured data. Secondary diffraction effects are ob- %
served in the measurements of diffraction by a thin strip, a %

non-vertical barrier and a thick edge. N
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L. INTRODUCTION

Many practical problems in acoustics are complicated by

the presence of boundaries which influence the sound field
in some way. When the direct path between source and receiver

is not obstructed, these boundaries represent a perturbation

to the free field solution. If the boundaries are infinite

in extent, the image or normal mode meticds are often applied.
Finite boundaries introduce the additional phencmenon of

E‘ diffraction or scattering, which is often treated as an

é additional perturbation to the free-field plus reflection

| solution. When the finite boundary is such thatu it blocks
the direct path the problem is somewhat different.

In this case, the only sound reaching the receiver is

that which has been diffracted at the edge of the finite
boundary (assuming the boundary to be rigid). In terms of
airborne noise control a finite boundary that blocks the
direct path is often called a barrier or screen. When a
similar technique is applied to the reduction of unwanted i

sound in a shipboard sonar system, the boundary is generally J

called a baffle. The location and size of baffles on sub-
marines and surface ships are severely constrained by the
size of the ships themselves. As a result, the baffle is

often close to the radiating source and the receivers close

to the baffle. Care must be used in selecting a theoretical
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approach to solving the diffraction problem under these cir-
cumstances since some of the techniques in general use involve
simplifying assumptions which may not be valid under these

rigorous conditions.

Much work on the solution to the barrier problem may be

found in the noise control literature. In this paper, two
solutions used in noise control are examined, along with the
little known solution by Biot and Tolstoy, and the theoreti- i

cal results are compared. In addition, experimental results ;

3
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relating to the application of theoretical sclutions to

finite barriers are presented.
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TI. THEORETICAL APPROACH

A. GENERAL

The usual approach to solving the problem of diffraction
by a plate or barrier is to approximate the barrier mathe-
matically as an infinitely thin, opaque, half-plane. This
problem was first solved by Sommerfeld [Ref. 1] for plane
continuous waves and then by Carslaw [Ref. 2] for spherical
continuous waves. Macdonald's [Ref. 3] work for spherical
continuous waves is often referenced as the rigorous solu-
tion to diffraction by a wedge (and hence the half-plane).
In 1957 Biot and Tolstoy [Ref. 4] published their exact
impulse solution using the normal coordinate formulation,
Despite the fact that the Biot-Tolstoy impulse solution is
in closed form and contains only simple functions, many
authors in the noise reduction field still consider Macdonald
as the only exact sclution [Ref. 5].

A second general approach to the problem is Kirchhoff's
approximate solution to the integral equation formulation
of Huygens' Principle. This approach has been used exten-
sively in both optics and acoustics and can be shown to give
reasonable agreement with observed results, within certain
limits , in spite of the fact that the basic simplifying

assumptions are generally acknowledged tc be incorrect

[Ref. 6].
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There are additional approaches to this problem that will
not be explored here. A good summary of the various solutions
in the context of the noise control barrier can be found in
Reference 5.

Rigorous dsrivation of the three theories will not be
attempted, however the development of each will be summarized

in order thut basic differences can be understood.

B. BIOT-TOLSTOY FORMULATION
M.A. Biot and I. Tolstoy published their landmark paper
[{Ref. 4] on the normal coordinate approach to wave propagation
in infinite media in 1957. Within this paper was an applica-
tion of the normal coordinate approach in solving the problem
of diffraction from an infinite wedge which forms the basis
for the theoretical results in this paper. The important
features of their work in the present application are as
follows:
a. The solution is exact and in closed form.
b. The solution can be expressed in elementary functions.
c. The use of an impulse source provides insight into
the contributions from various edges and a means of
separating the diffracted from reflected and direct
components.
The extension of their results to other types of sources is
straightforward.

The normal coordinate approach is related to the normal

mode description in acoustics which is most often encountered

10




in the solution of problems where the medium is bounded such
as room acoustics, shallow water sound propagation, and
speaker enclosures. In these cases the normal coordinates

are the allowable modes of vibration (normal modes) of the

system. The overall response of the system is the super-

ijé . position of these discrete normal modes. Stated another way,

| an external source excites all modes at various amplitudes
and phases and the solution then is the coherent sum of all
these individual excitations. The essence of the normail

2 coordinate approach to the solution of general diffraction

%l problems is the extension of the principle of superposition

of normal modes to infinite media. As the boundaries of the

"enclosure'" are removed toward infinity the spacing between

normal modes becomes progressively less, with the limit i

o ol L Do s et

being a continuous response spectrum with the boundaries at
infinity. If we now introduce a source which "turns on" at

time t = 0 (a transient source), the solution contains only

b et bl o bt 6 T

waves traveling outward and no radiation condition need be
imposed. The solution summarized here2 is taken primarily

from Reference 7.

In ovder to formulate the problem of diffraction by a

wedge, a cylindrical coordinate system is chosen with the ?
origin at the wedge crest and the z-axis along the crest as

shown in Figure 1. In this system the acoustic wave equation,

in terms of displacement potential ¢, is written as

11
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By separation of variables the harmonic solutions are

6 = etlveHv(l,z)(Kr) etryzetlwt (11-2)

where the sevparation constants are related by

2

2 9 L2 C]
Y cz ~ ¢ > k=2

Applying the boundary conditions for a rigid wedge,

3¢= M = =
==0; 8=0,08=38,

restricting the amplitude'to be finite at r = 0, and choosing

a location for our point source (r = L 8 = 60, z = 0) that

will result in z-axis symmetry, the solution is written as

- tiwt .
¢n Jvnﬁcr)cosvne cosy  ze (II-3a)
= IT ‘11I-
Vh ew (II-3b)

The soluticn can be separated into space-dependent and

time dependent parts,

6 = a¥, (I1I-4a)

n

<
[}

Jv (mr)cosvnecosyz (II-4b)
n

The q, are the normal coordinates which satisfy the

differential equation

. Qn
2 B e -
q. * w°q (II S)
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here Qn is the generalized source function and o is pro-
portional to the kinetic energy in eacn mode. The series
represented by (II-4) is known to be orthogonal and may be

normalized by the condition

-]
dz [ (mpn)zr dr
0 0
The medium is infinite in the r and z directions resulting
in divergent integrals. These are handled by Tolstoy using
a symbolic limiting procedure (discussed in detail in Re-

ference 7, section 8-2) resulting in the following expression

2 T

W TSI (I1-6)
It is at this point that we must choose an appropriate form
for the generalized source, Q-

The usual approach (and the one which we will ultimately
use) is to choose the delta function or unit impulse source.
It has two distinct advantages over other forms. First, it
will result in a solution identical to that achieved via the
Green's function approach, at least for those modes which are
physically realizable. Second, it provides a simple building
block with which the solution for other source forms can be
constructed through the application of Duhamel's theorem.

The result is analogous to analysis of electronic filters:

the response of the system to a unit impulse input is the

14
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system impulse response. The system transfer functicn is
the Fourier transform of this impulse response.
Biot and Tolstoy choose the source such that the displace-

ment potential at a distance R is of the form

6= - g 1t - M) (I1-7)

where 1(t - R/C) is the unit step function having the value
zero for (t~R/C)<0 and one for (t~R/C)>0. This represents
the instantaneous injection of a unit volume at the source
coordinates and is commonly used as a mathematical approxima-
tion to an explosion. Since the pressure and displacement
are related by

p=-olt (11-8)
the pressure at a distance R due to the source function of

Equation (II-8) will be

p = =0 $ LMo
However, Medwin [Ref. 8] derives the solution for an impulse
source directly from Biot-Tolstoy by simply taking the pres-
sure to be proportional to the Biot-Tolstoy expression for
particle velecity, since the two source functions differ by
a first derivative. Medwin shows that this is equivalent to
assuming a point source of strength S (volume per time) which
flows uniformly beginning at time t = 0. The acoustic

pressure at range R due to this source is given by

15
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Q, = - A(-t) [V 1, (17-10)

where A is the bulk modulus of the fluid, and Yo is the space
dependent solution for the free modes (Equation II-4). The
Lapacian of wn,.in brackets, is evaluated at the location of
the source. Substituting (II -4) into (II-10) and utilizing

(II1-6), the differential Equation (II-5) canbe written as

153 2 - 2C2 -
4, *+ w q, "E;'l( t) J n(Kro)cosvneoxdkdy (I1-11)

The solution to (II-11) represents the normal coordinates for

the problen,

cos wt 2C?2

w? ™y Vn

Substituting into (II-4a) and taking the time derivative, the

(Kr )cosv 8 KdeY t>0 (I1-12)

solution can be written as

9 2c? ) =
- — cosv_08 cosv_6 J (er)J. (xr_ ) cosyz X
5% ew n n no [ [ Vn vn o
5_112_91 cdedy (I1-13)
W

Equation (II1-13) represents an exact solution to the
perturbation of a propagating wave by the presence of a
rigid wedge, assuming Equation (II-10) as the form of the
source. Its present form is not particularly useful, how-
ever the application of two known integral transforms to
Equation (II-13) reveals its simplicity and its close re-

lationship to the physical problem in an intuitively

16
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satisfying way. The application of these transforms is

discussed next.

Equation (II-13) contains integrals with respect to both
the z-axis wavenumber vy and the radial wavenumber x. Con-

sidering the integration over y first,

o0 . x . 2 h
cosyz iR Wt 4. o L | o5y, SiN ctly ie’) dy (II-14)
w C (Yz.,Kzﬁ

0 0
and the relationship of the separation constants
w? = Ry 2ee?)
The integral on the RHS of Equation (II-14) represents a

knownintegral transform, as follows [Ref. 7]:

- -] . ;2
% ( cosYz S:nzcif;;+‘z) dy = %E JO[n(cztz-zz)%] ct>z
A
0

= 0 ct<z (II-15)

The existance of two distinct forms of the solution, one of
which is zero, is a direct consequence of the choice of a
transient source, i.e. if the source is turned on at t = 0
there can be no effect at the receiver until a time equal to
the source/receiver separation distance divided by the pro-
pagation speed. In this case, z is one component of that

separation vector.

Using the result of (II-15) the remaining integral of

(IT-13) may be written as

17
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I = [ Jvn(”)‘]vn("o) Jo[t(c’t’-z’)“]nen (II-16)
0

This integral has a known solution which takes on three
different forms depending upon the relationship of the
variables r, r_, and (c?t?- z’)k.  Tolstoy [Ref. 7] defines

these three regions in terms of thé propagation time of a
|

pulse emitted by the source at t -Ho. The time of arrival

(at the receiver) of the earlist pﬁssihle direct pulse is

1
!
!

given by

1 , . 1/2
tl = E[(r-ro) + z2]

The earliest time of arrival of the pulse which has traveled

from source to receiver via the crest of the wedge is

T, " %[(r s T )t 2211/2

With these new variables, the three regions of the solution

are given by

I. t <t I =0
! n (I1-17)
. -1
II. t‘<t<-r° In = (nrro sinX) cosan
r? + r ? o+ 2% c?t? 0<X<r
X = arcos ero
(I1-18)
. . -
III, r°<t In- -(nrro sinh Y) s1n(vnn)e VnY
c2t? - (r?2 + r 2 + z?)
Y = argcosh o
TY
o
(I1-19)
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These three regions have a strong intuitive foundation.
In Case I. it is obvious that a pulse transmitted by the
source cannot be received uwntil a2 finite timec hes elapsed,
that time being equal to the separation divided by the pro-
pagation speed. Case II. represents that time during which
reflections from the face of the wedge are received. Tolstoy
[Ref. 7] shows that when this expression for In is substituted
into Equation (II-13), the solution takes the form of images
of the source in the reflecting wall. Finally, "ase III. is
the diffracted wave. It is characterized by a. arrival time
which is later than the last possible image source arrival,
as seen from Figure 1.

The same results can also be interpreted geometrically,
as discussed by Watson [Ref. 9]. If we rename the variables
r, r,, and (cztz-zz)k in ({I-16) as b, ¢, and a, respectively,
Watson points out that the three regions of the solution can
be described in terms of the geometry of Figure 2 (z is taken
to be zero for simplicity). The solution of Case II. applies
whenever the value of side a is such that a triangle can be
formed having sides a, b, ¢c. It is obvious that this will
be the case whenever a has the values

(b-c)<a<(b+c)
and, from the law of cosines, the angle A will be given by

2,.2_02
b L (I1-20)

where A can take on values between o and m. The comparison

A = arccos

with Equation (II -18) is immediate., In Case III., a is

19




Figure 2. Source, Receiver, and Wedge Crest Geometry.




greater than (b+c), the angle A becomes imaginary, and the
expression corresponding to (II-20) must come from hyperbolic
trizrnometry:

az_bz-cz

A = argcosh <

{Ir-21)

It can be seen from this discussion that the Biot-Tolstoy
formulation in the time domain decomposes into direct/reflec-
ted and diffracted components in an intuitively satisfying
way. This is apparently due to the use of the normal coor-
dinate formulation, which considers only modes which are
physically realizable, and the choice of the transient form
of the source. However, because of this distinct division
between direct and diffracted solutions, considerable car:
must be exercised when working with a geometry where the
arrival times of the direct and diffracted waves are close,
such as near the boundary tetween the "illuminated" region
and the geometric shadow.

To arrive at the final solution for the diffracted wave,
the result of Zquation (II-19) is applied to the general

solution (IT-13) as follows:

3¢ . ¢ ; -13 . -v_Y
53 Trew(rro sinh Y) rlzocosvneo cosv 8 sinv_me °n
v, » 2T (I1-22)

Expressing the sum in terms of exponentials, regrouping, and
collecting in conjugate pairs, the solution can be written

in exact, closed form as

21
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camaciasiaem mey Emes—SSa o oS - - - B = e oy A =
i g s mean e s Smpas oSS e T R ST RO T SRV ETS

nY n
oy T sin (x—~(7%820 ))
5 3;§;(rro sinh 1) !¢ W1 _wYE;l > =Y

BWegs (T B
1-2e cos(F;(n:e:eo))*e
(I1-23a)
cle? - (r? + roz + 2%)
n -2
Y argcosh ero (I1-23b)

where the term (w:0:6,) indicates that the entire expression

within the curly brackets is the sum of four terms, each of

‘ which corresponds to a unique combination of (w29:8,).

Recalling the discussion concerning the forms of the
& impulse source, Equation (II-23) can now be used in place of
the second partial derivative in (II-8) and the solution of

the diffracted wave in terms of pressure can be written as
. _rY
p(t) = - 2SS (rr siph V3T e OW (]
4ne °

bkt e A, L il o el ahik s

(11 -24)

where Y is given by Equation (II-23b) and B represents the
term in curly brackets in Equation (II-23a). :
Equation (II-24) represents the diffracted pressure as a i

function ¢f time due to a unit impulse source. To within a N

constant representing the source strength, this is analogous

to the impulse response, h(t), of a general linear system.

This impulse response is often Fourier transformed to obtain
the transfer function H(w) and examined in the frequency Lk

domain. Since there is no known analytical transform of 3

22




of Equation (I1-24), the numerical technique of computing the
irpulse response in discrete time steps and then transforming
using the Fast Fourier Transform (FFT) is employed. To avoid
the problem of infinite values of h(t) for the earliest
diffracted arrival, Medwin uses an approach which cumputes
the first time point by a numevrical integration. All of the
Biot-Tolstoy theoretical results presented in this paper are

calculated in this way.

C. HELMHOLTZ-KIRCHHOFF FORMULATION

The Helmholtz-Kirchhcff formulation is a mathematical
statement of the heuristic description of wave propagation
due to Huygens. Simply stated, a source at some distance
from the surface (in this case a plate which has one straight
edge and extends to infinity in three directions) insonifies
all points on the surface S. Each small area element, ds,
on the surface then acts as apoint source of spherical waves.
At some observation point 9, the acoustic field is due to the
incoming waves from the source directly plus the sum of the
contributions from all of the point sources on the surface.
Neglecting the effect of the direct incoming waves at Q, the
field can be determined by integrating over the surface. To
construct an exact solution in this manner one would have
to know the amplitude and phase of each point "source" on
the surface. This not possible, in general, and therefore

the Kirchhoff approximation is used. The brief development
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given herein follows that in Clay and Medwin [Ref. 10]. A
detailed derivation can be found in most optics texts and
in a book by Baker and Copson [Ref. 6].

From Green's theorem, assuming a source of time dependence
ei“t, the filed at the observation point Q can be expressed

( -ikR -ikR
1 3 e e U
u@Q) = (Ugp () - =g (Gy)] ds
where R is the dist:gce from each element ds to the observa-
-ikR
tion point Q and 3-“-— is the free space Green's function.

That the integrand is evaluated on the surface is denoted

by the subscript s on the brackets. This known as the
Helmholtz-Kirchhoff integral. It describes the relationship
of the field at Q to the field on S, but the problem of
evaluating the field on S is not yet resolved.

Equation (II-25) can be used to evaluate the diffracted
wave field on either side of the surface. Our primary in-
terest is the diffracted field when source and receiver are
on opposite sides of the surface, however, when they are on
the same side (herein referred to as backscatter) the result-
ing expressions can be somewhat simplified. Since the purpose
of this development is to compare the results with those of
the normal coordinate approach, the simpler case will be
used. For a complete treatment of this Helmholtz-Kirchhoff

integral equation approach, see Baker and Copson [Ref. 6].




If U, is defined as the incident wave field at the loca-
tion of the surface, with the surface removed, then the
quantity U within the integral can be approximated by

U = MU, (11 -26)
where M i_. the plane wave reflection coefficient. From

-
bl o ol ot i

equation (II-26) the normal derivative can be written as

TR E - (11-27)
By Equation (I1-26), the restriction has been imposed that

the only wave field that can exist on the insonified surface

o a1 e il s AR o 1

of the barrier is that due to reflection of the incident

IR il

wave field (i.e., there can be no scattered field on the

;f surface). The consequence of this assumption will be seen
when the diffracted field near the surface is examined. . ;

The additional assumption that is required to make the

i

integral in (II-25) tractable concerns the reflection co-

efficient M. Kirchhoff's assumption considers it to be

equal to the plane wave reflection coefficient for an infi-
nite plane interface. Here the surface is assumed to be %
perfectly rigid and M = 1. Equation (II -25) can now be | 2

written as Q,i
» 1 [ 3 . eikR "
u@Q = 37 ﬁ(Us—r-) ds (I1 -28) ;

When the integral in Equation (I1-28) is taken over the

surface of the half-plane, the U(Q) represents the backscat -

tered wave field, If, on the ocher hand, the integral in

Equation (II-28) is taken over tie portion of the plane not
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occupied by the surface (generally referred to as the aperture
in optics literature), U(Q) would represent the wave field
scattered forward into the shadow region on the side of the
half-plane opposite the source. (Note that this approach

would also require a change of sign due to Equation (II-27).

D. MACDONALD'S FORMULATION

The final theoretical development to be considered here
is that of Macdonald [Ref. 3]. His solution, like Biot-
Tolstoy, is an exact solution for the infinite rigid wedge,
except that Macdonald assumes a continuous wave (cw) source.
A derivation of his solution will not be attempted, instead,
the results of Kawai, Fujimoto and Itow [Ref. 11) will be
used. The calculations in their paper are based on an ap-
proximate form of Macdonald's solution given by Bowman and
Senior [Ref. 12] but only the form of the exact solutioun is
presented below.

From Reference 11 the exact solution can be written in

terms of the velocity potential as

v = V(eo) + V(-eo)

] °°H;l)(’r2 + kR) . °°Hl(l)(T2 + kR)
v = ik R ZkR)llz dT + ik E&z - ZkR)llzfi dT
"R -3 (I11-29)
where
T = sgn(m - 6 -eoj(le - kR)l/2 (I -30a)
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Tp- = sgn(r — 6 — 6 ) (kR; - kr-)1/2 (I1-30b)

sgn(X) = { } §23

1/2

= 2 2 2 -
R (rc + T, * 2 ero cos (8 +eo)) (IT -31a)

1/2
- o 2 2 2
R (r? + ro +2 Zrl‘o cos(6 + 90)) (IT-31b)

2 2 1/2
Ri= ((r +ry)" + 2% (1I-31c)

k = o/c

r, r

e et -

0! Z» 9, 90 as defined in Figure 1

and Hl(l) is the first order Hankel function of the first
kind.

The significant feature of this solution, first pointed
; out by Macdonald [Ref. 3], is that it consists of the sum of
; two velocity potentials, V(6,) and V(-6,). These are iden-
tified in the noise control literature as the source and
the "image of the source in the barrier'", respectively. This

] important interpretation of the solution will be discussed

in a later section.
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III. COMPARISON OF SOLUTIONS

A, BIOT-TOLSTOY AND HELMHOLTZ-KIRCHHOFF

Biot-Tolstoy (B-T) and Helmholtz-Kirchhoff (H-K) solu-
tions will be compared by choosing a geometry in which both
can be expressed in closed form. The backscatter case is
chosen wherein source and receiver are in the same location.
For this case the time domain solution for the H-K formulation
is derived from Equation (II-28), once again following the
development in Clay and Medwin [Ref. 10] with some minor
changes in notation.

Taking source and receiver to be in the same location
(backscatter only) and assuming an impulse source, Us in

Equation (II -28) can be written as
-ikR

e
Us T (I1I1-1)
Making this substitution and transforming the surface

integral into an integral along the edge [Ref. 10, pg. 323]

Equation II-28) can be written as follows:

™
7 r )
-2ikR
U(Q) = %;f d [&——]da
RZ
—‘n (.-}
Vi
s
7 _-2ikrR T
= {? [ 1 da
- (I11-2)
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here y, a, and R are defined as shown in Figure 3. If the
y axis line through ) intersects the rigid half-plane, the

integrand of equation (III-2) is represented by

y y
[ 1 +~0 1
® r
(Case I)
If not, the integrand becomes
r
1
(Case II)

Taking the inverse Fourier transform of (III-2), and denoting

the time domain solution by a small u,

™
® 7T -2ikR (T .
u(Q) = &= | f £ [ e'®t af do
RZ
-Q-E - -]
3
(ITI -3)
For Case I this becomes
™
s(t - 2 sct - 2Y) o i(ot-2kr)
- c c . e” =
u(®) = [~ 1+ 57— - & j ———dadf]
T
-m-z
3
(I11I-4)

Where § represents the Dirac delta function, a consequence
of the choice of the Green's function of the Helmholtz equa-
tion for the incident wave field.

The first bracket on the right hand side of (III -4)

represents the reflection from one half of an infinite plane.

29

Lk ok i

ittt




T ] e T

+xA

Réu

evior ik el il + o weiadl

RN

T T

it minken s L RS

Figure 3. Coordinate System for Backscatter from an
Infinite Edge.,

St T

T




The second bracket contains the specular reflection from the
other half of the plane but reduced by the integral expres-
sion representing the fact that the plate is finite. This

is in the form of an integral along the edge. Following Clay

and Medwin ([10], this is called the boundary wave and defined

as follows: w

© 2
i(wt-2kr)
D(t) -%—2-_[/ & dadf
-0 m rz
"7

(III-5)

;‘ Case II results in a similar expression but without the
reflection.
' In terms of Equation (III-S5) the following expressions

are written for the time domain impulse solution:

se-2) .
3 u(@Q = [—5— - TrczD(t)] (Case I) (III-6)
§

ﬂ u(Q) = %ET D(t) (Case II) (II1-7)

Taking advantage of the time domain form of the solution

and separating the reflected and diffracted (boundary wave)

components of the wave field results in

(-) Case I
u@ = ¥ L= (e)

Te (+) Case II

This can be written in terms of the geometry of Figure 3 as

follows (from reference 10, section 10.2.3)
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u(Q) = L— ¢ . }
nc? t(tz#sz-Toz)(tz' 102)1/2 £2te (III-8a)
-0 t<to (III -8b)
where
2x
= 1 = - 31, s -
T, = — = cos 8 Ty COs 6
y = Cto
2R
TO = nr——
c

Finally, through trigonometric substitutions,

2 r? sin 26
u@Q) = - { }
ﬂC’ t(tz'tnz)(tz‘rﬂzii]z (III‘Q)
The diffracted pressure at Q as a function of time is given

by

py(t, Q) = - PR u(Q)
(IT1-10)
where P6 is the source pressure spectral density and R0 is
the reference distance. Taking the product pGRo = ] Pascal
meter, the diffracted pressure at Q, as a function of time,

can be written as

Pd(t, Q) = - u(Q
2 {rz sin 20
mc' t(t?-t,2) (t%-1

1 2}
02

(II1-11)
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The corresponding expression for the Biot-Tolstoy for-
mulation can be obtained from equation (II-22). For the

thin plate (9w = 27n),

3¢ . S——(rro sinh Y) 'Z cos %3 cos E%L sin %1 e z

ot am? n (I111-12)
Working with the sum and noting tiiat @ = 8, (source and re-

ceiver coincident),

nY . .
- iné -1né -

S = Zcos’%ﬂ sin%l e T = Z% (1 + e ‘—%~e )sin %E e 2
n

n

Multiplying terms and observing that sin 3% is zero for n

even and *1 for n odd, the sum can be evaluated as
Y 3y _SY

S = % (e Z. e K + e . ceees) +
+ % (e U _ g7dum , Swm ) +
+ % ( e U2 e-3uz . e-Suz - )

= % sech % + % sech u; + % sech u,;. Re(%) >0

(111-13)

[
D
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After considerable manipulation the sum can be written as

2 cosh’% cos 6 + cosh Y + cos 20

S = % { ]

Y
cosh Y + cos 28 -
( ) coshy (I11-14)

From the geometry of Figure 3 the following can be defined

2r ro =1 = 55
c

Ol
-

To =

The various trigonometric quantities in equation (III-4) can
now be expressed in terms of these as follows:

sinezz s-t_o.

Ty To
2
cos 20 = 1 - 2 sin?8 =1 - 2 Lol
2
To

For r = T equation (I1-23b) can be written as

Y= argcosh (V)

a 1l cit? _ t?
where V (2- 5 1) = (2 T—o_z - 1)
Using the half angle relations for hyperbolic functions
leads to
cosh ¥ = (Gve1) 12y ot/
Similarly,

sinh Y = (v2- 1)1/2

- Z%EY (tz_roz)l/z

And finally, to within a factor of 2,

R4




Spr t2(cosd + 1) - t,?
2m2c?  t2(t? - o) (ti-vy

2r
2)172) = PGROFE?( )

(I11-15)

p(t) = -

Letting PGRo be unity, as before, results in an expression
for the diffracted pressure wave in the time domain which
can be compared directly to the H-K result.
Biot-Tolstoy:

2r tr(cos 8 + 1) - t,?2 )

p(t)gp= - t>Ty
BT me? “i(e? - g,2)(t2 - 1,2) ¢ (111-16)
Helmholtz-Kirchhoff:
P()pyg = - 2r r sin 26 1/2) t>T,

re?  t(t? - to?)(t? - roz) (I11-17)

Equation (II1-16) and (III-17) are similar in overall
form but differ in several important ways. When T, is much
greater than t,s the time dependence of both expression is
determined by the (t?-t o’)'ls factor. (for t_ approaching
T the behavior is more complex and is treated in detail
in Appendix A).

Since the impulse source has an infinite amplitude, the
leading edge of the diffracted pressure signal (t-ro) must
also be infinite. After this infinite leading edge, the
time behavior can be described as follows:

At = t - T t2 = At? + 2tTy -T,?

For the 'early diffracted signal, At<<t and

-1/2
(¢ - w2 s 2tr, - 2t V20 (2 (2o10)) T 22 (210t
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The initial diffracted time signal decays as At‘k for both
solutions. Since the amplitude is highest in the early time
portion of the signal, this At'k dominates the Fourier trans-
form of the signal and the frequency dependance of both
solutions takes the form f'k which is characteristic of many
diffraction problems. As time increases, however, the H-K
solution approaches the form t” " while the B-T form approaches
v,

Both solutions have been implemented on the IBM computer
system at NPS. The diffracted time signals for a representa-
tive geometry are shown in Figure 4. Care should be exer-
cised in comparing the magnitude of the first point (t = 0)
since the "infinite" values here were handled differently in
the two solutions. The approach used in the B-T computation
is the numerical integration technique discussed earlier
while the approach for the H-K results are taken directly
from Clay and Medwin [Ref. 10].

The behavior of the two solutions as a function of 6 is
also fundamentally different. Examination of the numerators
of Equations (III-16) and (III-17) over the region of 6 from
0 to 180° (the problem of the thin plate being symmetrical
with respect to 180°), reveals three apparent zero values
for the H-K solution (8, 90°, 180°) vice two for B-T (90°,
180°). Actually, the zero in the numerator at 90° is o2ffset,
in the limit, by the term (tz-toz) in the denominator which

goes to infinity at t = to. Physically, this means that
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when source and receiver are directly over the edge, perpen-
dicular to the plate, the solution consists of reflection
only. In order to show the detailed 6 dependence, the time

domain solution has been computed for a variety of geometries

and each time solution transformed to the frequency domain.

These results are plotted versus 8 for several frequencies

in ?igures S and 6. The amplitudes are in dB with the

reference being twice the range from scurce to edge. The

T [erp—
TR P FE OO DO SRR TS SR P WY

differences between the two solutions are significant, with
‘ the only region of agreement being near 90° where both solu-
tions appear to approach the value of -6dB. This is the

expected result and represents one half of the pressure §§

——— e e——

amplitude that would result from reflection by an infinite
plane. Actually, the H-K formulation produces the correct

result at 6 = 90° while the B-T solution appears to fail in

i, it e s s i

the immediate vicirity of 90°. As 8 approaches 90°, the

WL - ediGaLode

travel time of the reflection t, approaches the travel time
of the leading edge of the diffracted pulse Ty

In this region, equivalent to approaching the shadow

boundary in the forward scattering case, the B-T solution is
approaching the delta function form and the approximation N
used to calculate the first time point may not be valid

(see Appendix A). The B-T diffractiosn solution can only be

kv ot e e e
adails L

used for 6 approaching 90° since at & = 90° the separate

reflection solution would apply (Equations II-18 and II-19).
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As the source and receiver are moved away from 90° the
disagreement between the solutions is dramatic. It is in-
tuitively correct that both solutions go to zero as 8

approaches 180°, since the plate is infinitely thin and

would not be "sensed" by a wave from this direction. The
way in which the solutions approach this zero value is
quite different.

The most significant disagreement between the solutions
is seen when source and receiver are close to the plate (8
approaching 0). The H-KX solution approaches zero near the
plate (it is symmetrical, ekcept for sign, about 90° due to
the sin 260 term) while B-T approaches a constant value for
each frequency. This zero in the H-K solution appears as a
consequence of the simplifying assumption stated in Equation
(II-26), where the total pressure field in the plane of the
plate is assumed to be the value of the incoming wave field
evaluated at that location (M = 1 assumed). This '"boundary
condition" therefore forces the diffracted pressure field
to be zero anywhere in the plane of the plate. It will be
shown in the experimental portion of this paper that the
B-T solution is correct in this region near the plate.
Although not shown in Figures 5 and 6, both solutions exhibit
the proper sign behavior, i.e., the direct and diffracted
pulses are opposite in sign in the region 0 to 90° but have

the same sign for 90 to 180°.
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The summary, the B-T and H-K solutions simplified for the
case of coincident source and receiver, are dramatically
different. They approach agreement, in general, only in the
region near, but not at, 8 = 90°,

The final consideration before leaving the topic of
backscatter is an examination of the form of the B-T solution.
Multiplying out the numerator and regrouping terms, Equation

(IIT-16) can be written as

2r cos 6 1

(t) = - =, ( + )t>T
Pqtt/pT TC? V17 102 (£2o1,2) 172 2 (t2-1,8) 172 0
(I11-18)

When written in this way, the solution is seen to have an

interesting characteristic. The solution is the sum of two
terms, one which takes into account the overall geometry of
source/receiver and plate (the first term in III-18) and a
term which depends on the distance from the edge of the plate
to the source/receiver. This seems to be a characteristic

of exact solutions of the problem of diffraction by a half-
plane and is directly related to the '"image in the barrier"
first mentioned by Macdonald [Ref. 3]. This "image'" approach

will be discussed in some detail in the next section.

B. BIOT-TOLSTOY AND MACDONALD

In comparing the B-T and Macdonald half-plane diffraction
solutions, an approach similar to that of the previous sec-
tion will be used. However, the solutions will not be limited

to backscatter but will be kept general and the emphasis will
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be on "forward scatter", i.e., diffraction of sound into the
geometric shadow region (source and receiver on opposite sides
of the half-plane). The purpose of the comparison is twofold:
to show that computations based on the two '"exact'" solutions,
one impulse and one CW do, in fact, produce the same results,
and to gain some insight into the use of the "image in the
barrier'". As discussed in section II, the Macdonald's
solution form and computations are from Kawai's excellent
paper [Ref. 11).

The comparison between B-T and Macdonald computational
results requires some manipulation of geometric quantities.
Kawai's results are converted to the notation of this paper
for consistency, however, this results in only 2-3 points
per frequency spectrum. To alleviate this problem somewhat,
the geometry is selected in such a way that several different
B-T runs result in basically the same values. Figure 7
shows this geometry and the comparison between B-T and
Macdonald results. The reference pressure is the free-field
pressure that would be measured at a distance of r + r, from
the source with the plate removed. Data referenced in this
manner are labeled '"dB re free field at 2r'. This combination
of geometry and reference results in B-T theoretical values
which vary only one dB over the range 6 = 330° to 6 = 360°.
Kawai's computations are then converted from his normalized
presentation [Rcf. 11, Figure 3] to the format of Figure 6

in 5° increments of 6 between 330° and 360° inclusive and
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plotted in Figure 7 as discrete points. The agreement between
the two solutions is seen to be very good. The scatter in the

Kawai points is almost certainly attributable to the process

of reading these values from the graphs of Ref. 11. Additional

comparisons were made over a wide range of different geometries

using the B-T theoretical results of Bremhorst [Ref. 12] with
agreement similar to that shown in Figure 7 observed in all
cases.

It should be noted, however, that the comparisons were
not made for the general case of high frequency, large range,
near the shadow boundary (RN large and N small in the presen-
tation of Kawai).

Kawai [Ref. 11] actually presents two sets of computations
of Macdonald's theory; one for the '"real'" source only (refer-
red to as ATTGO) and one for the '"real" plus "image' source
(ATT). This terminology appears to be traceable directly to
Macdonald [Ref. 3]. In his solution he separates a complex
integral [Ref. 3, p. 422] into two integrals, performs the
integrations separately, and recombines the two into an over-
all solution for velocity potential [Ref. 3, p. 425]. Bowman
and Senior's approximate form of this overall solution [Ref.
1]] is given as equations (11-29), (II-30), and (II-31).

The comparison of B-T and Macdonald in Figure 7, is based on
Macdonald's complete solution, ATT. Indeed, if the complete
solution of the half-plane problem is the sum of these two

terms, it is not Clear why one would want to consider them
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separately. Yet this is precisely what is done by many authors
in the noise reduction field [ef. Ref. 57.

In order to examine the 'real” and '"image' terms in Mac-
donald's solution more closely, equations (II-30) and (II-31)
are repeated here with a slight change in the way 8 and eo

are expressed;

Tp = sgn(r - (8 = 8 _J) (kR - kR) 1/2 (II-30a)
.1/2

Tp- = sgn (v — (8 + 8_))(kRy - kR?) (1I -30b)

R - (r? + 1o + 2% - 2rr_ cos(e-8 ))1/2 (I1-31a)

R® = (r? + 1o? + 2? - 2rr_ cos(e+eo))1/2 (IT-31b)

The primed values represent the ''image'" source terms. The
real source terms are a function of the difference between

6 and 60 while the "image'" terms are a function of their sum.
The significance of this is shown graphically in Figure 8.
Figures 8(a) and 8(b) show two different geometries, both of
which have the same value c¢cf the quantity 6 - eo. Since

(6 — &) is only form in wnich the quantities & and 6 enter
real source portion of the solution, it is easily seen that
the real source solution is independent of the orientation
of the plate. It depends only on the locations of source
and receiver relative to the edge. However, the geometries
of Figures 8(a) and 8(b) are different in terms of (0 + 60).
It is this term which retains the information concerning the

orientation of the plate (half-plane) relative to source and
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receiver. Since changing the sign of 9, is the same, geome-
trically, as moving the source to the opposite side of the
barrier, one can easily see why the second term of the solu-
tion is associated with the "image of the source in the
barrier". This interpretation is shown in Figures 8(c) and
8(d).

This interpretation is not unique to Macdonald's solution.
Recalling equation (III-18), is was shown that the B-T
solution, for the case of coincident source and receiver,
could be written as the sum of two terms, one which depended

only on the orientation of the edge and one which also con-

sidered the location of the plate. Indeed, the general form

’E

:
E
! eo
. B =

of the B-T solution given by equation (II-24) could be

written as the sum of a term that is a function of 8 — eo
and another that is a function of 6 + 8 . This would be done b

in the following way:

p(t) = p(t, 60) + plt,-98)
. Y

20C (rr_sinh V) 'e PWis, + 8
0

4nH o
w

. kig ..
. ) sin [rt(6 — 90)] .

- -6}
(o}

2nY

1-2 expé%!) cos [wt(e~e°)] + exp (‘§’_

w w w

= E

sin %;Iﬂi(a +8.)]

0

1-2 expfgi) cos IT-—[-rrt(e + eo)] + exp (-éll
w w w
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where each B term is actually the sum of two terms, one with

e g

the term in brackets evaluated using the (+) sign and the

other using the (-) sign. There appears to be no advantage

to writing the B-T solution in this way except to show the

geometrical similarity to Macdonald's result. Indeed, Biot

and Tolstoy specifically identify both terms as diffraction
- not reflection.

True reflections have separately been iden-
tified by B-T as occurring before the diffraction; an inter-
pretation that is direct and obvious in their impulse solu-

tion, but which is obscured in Macdonald's CW solution.

et i it bt i A B

1 In summary, the B-T and Macdonald exact solutions have

! been found to be in very close agreement for all of the cases
|

2 . . i
pi examined. Real and image sources have been shown to be a

valid, if not particularly useful, interpretation of both
solutions.

e
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IV. EXPERIMENTAL APPROACH

A. GENERAL

The measurements reported herein were made in the NPS
anechoic chamber utilizing pulse techniques. The anechoic
chamber provided the low noise, low reverberation environment
necessary to make precise amplitude measurements at low source
levels. The use of a pulsed source provided a signal that
was both wideband and deterministic and made it possible to
control the effects of extraneous scattering by judicious
choice of the sampling window. Detailed descriptions of the
anechoic chamber and the data acquisition hardware may be
found in Reference 12, and will not be repeated here, except

when necessary to explain the results.

B. DATA ACQUISITION

A block diagram of the overall experimental data acquisi-
tion process is shown in Figure 9. Overall timing of the
acquisition process is controlled by the programmable timing
simulator. A typical sequence is as follows. The waveform
generator is triggered by the timing simulator, sending a
single replica of the preprogrammed pulse to the power ampli-
fier. This pulse is amplified to approximately 50 volts
peak; added to the 150 volt D.C. bias voltage, and applied

to the source (source and receiver characteristics will be
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discussed separately). The transmitted signal is received by
the )3 inch condenser microphone (B+K 4133) and sent to the
signal conditioning equipment. Here the signal is amplified,
filtered to remove low frequency noise and to prevent alias-
ing in the sampling process, further amplified and digitized

(12 bits). Here the timing simulator determines the start

time and duration of the sampling of each pulsa. By selecting

the sampling frequency and duration, the number of samples
available to the FFT can be determined. In practice, the
number of samples is set slightly higher than the number to

be transformed since the computer begins with the first

sample and disregards those coming after the specified number

have been acquired. This process is repeated for each pulse
with a pause of approximately 80 milliseconds between pulses.
The computer accumulates the samples by averaging up to
10,000 samples in the time domain and then computes the
Fourier transform of this averaged waveform using a standard
software FFT algorithm. Since the FFT must be taken only
once, the system runs in real-time, which allows a very
large number of pulses to be averaged in a reasonable amount
of time. Since this averaging is coherent, the signal-to-
noise ratio is proportional to N, the number of pulses,
rather than the usual N%. The averaged time waveform or

FTT results are stored on a floppy disk for later use.
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C. SOUND SOURCE

The ideal sound source for these experiments would be a
point source capable of high acoustic output over very short
time durations, with zero output at all other times. These
characteristics can only be approached with a real source.
The obvious choice of a spark source is rejected in order to
avoid finite amplitude effects. Fortunately, the extremely
low noise levels of the anechoic chamber plus coherent
averaging makes accurate measurements possible with a source
of relatively low intensity. The search for a useful source
of small dimensions and narrow time response has been a con-
tinuing one at NPS[cf. Ref. 14]. The source chosen for the
experimental work in this paper were the B § K )% inch and 1
inch condenser microphones. The use of these microphones as
sound sources is described in Reference 12 and in a B § K
technical pamphlet [Ref. 15]. In general, the ! inch source
covered the higher frequencies (6-40. kHz) while the 1 inch
source was used to provide additional low frequency coverage
(down to approximately 1.5 kHz). The 1 inch source is
actually capable of providing sufficient output over the
entire frequency range but directivity does become signifi-
cant at the higher frequencies.

Typical source waveform and frequency spectra are shown
in Figures 10 through 13. In Figure 10, the waveform at
the output of the power amplifier is the top curve with the

received waveform shown below. The received waveform (and
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associated frequency spectrum) is actually due to a combina-
tion of source and receiver response, however, the relative
contributions of each are not particularly important since
all results are normalized by an appropriate reference mea-
surement using the same source and receiver. The time dura-
tion (or "ringing") of the pulse is important since all of
the desired diffracted pulse must be sampled before the
unwanted arrivals from the other edges of plate. The longer
the acoustic pulse, the larger the specimen must be to
separate the pulses. This ringing is especially important
in measuring backscatter since the low amplitude diffracted
pulse will arrive after the direct/refiected pulse which is
much higher in amplitude. Figure 11 shows the energy
spectral density of acoustic pulse in Figure 10.

Figures 12 and 13 present the same data as Figures 10
and 11, with the same receiver, but using the 1 inch source.
In this case, the received pulse was low pass filtered at
14 kHz in order to enhance the low frequency portion of the
spectrum,

Once an acceptable source and receiver were selected, a
mounting system had to be devised which allowed the micophones
to be positioned accurately yet present a minimum of
additional scattering surface. The apprcach used is shown
in Figure 14. The diffracting object (in this case a thick
plate) was suspended with nylon fishing line from a frame

attached to the ceiling of the achechoic chamber. Heavier
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objects were also supported from below. The source and re-
ceiver were each attached to a pair of thin stainless steel
wires mounted firmly to the ceiling frame and resiliently

to the wire mesh floor of the chamber. Source and receiver
were positioned in the horizontal by moving the ceiling and
floor attachments and vertically by moving up or down the
wires. Additional support of the signal cables was provided,

as necessary, with nylon line from the ceiling frame.

D. PLATE CONSIDERATIONS

The plate used in the experiment should be as thin and
yet, as rigid and non-transparent as possible. 1In addition,
it was desirable to keep the overall weight of the plate low
to facilitate handling and suspension within the anechoic
chamber. Aluminum plate .475 cm thick was chosen as a
reasonable compromise. The transmission loss, calculated
using the approach of Reference 12, was greater than 40 dB
at 1.5 kHz, increasing with frequency. This was considered
adequate since nc¢ thin plate measurements were planned
where the direct path through the plate was to be substan-
tially less than the diffracted path. For the thick plate

tests the direct path would be short but two plates would be

used and the resulting attenuation would certainly be adequate.

These estimates were verified by examining the received sig-
nal prior to the arrival of thefirst diffraction to ensure

there was no significant direct path arrival.
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V. BACKSCATTER EXPERIMENTAL RESULTS

In Figures 5 and 6 it was shown that the B-T and H-K 3
solutions give dramatically different results for backscatter !
near the surface of the rigid half-plane. A simple experi-
ment was performed to determine which solution is correct.
The one inch B+K microphone was used as the source with the
one-half inch B+K microphone used as the receiver. They were 4
taped together and positioned at a distance of 25 cm from the

edge at various angles as shown in Figure 15. Although the

source and receiver acoustic centers are separated by approxi-

Lo 3
;‘ mately 2.5 cm they will be assumed to be coincident. ;
The transmitted waveform was the half triangle discussed ;

earlier but the received signal was low pass filtered at

60. kHz vice the 14. kHz shown in Figures 12 and 13, to :
achieve a higher frequency response. Each transmitted pulse %
actually resulted in three received pulses. The first pulse, g
which arrived almost immediately, was the direct source/

receiver path. The second was the reflection from the plate.

while the third was the desired diffraction from the edge.

Unfortunately, the first two pulses were considerably higher
in amplitude than the diffracted pulse. Even with the ability
to exclude the first two pulses in the time domain, the

ringing of the reflected pulse interfered with the analysis E

of the diffracted pulse. This limited the geometry to ]
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source/receiver locations near the plate, which presented no
particular problem since this was the region of most interest
anyway.
The results of this experiment are presented in Figure 16,

with the free-field pressure at 2r used as the reference.
é : ’ For the comparison, the theoretical B-T and H-K results are
', shown for angles approximating those of the measurements.
1f (These theoretical results are the same as those presented

' in Figures 5 and 6, now plotted as a function of frequency
for specific angles.) The B-T theoretical results are
_w plotted as a single line since they vary by less than one

. dB over the range of angles presented. It is clear that the

| measured data tend to agree with the results predicted by the
B-T solution rather than going to zero at the surface of the
plate as in the H-K solution. The considerable scatter in
the measured data, especially near 9 kHz at 30 degrees, is
attributable to interference between the diffraction pulse
and the ringing of the reflected pulse.

The measured data not only favor the B-T solution but
also confirm the presence of a scattered wave near the sur-
face. If this scattered wave also exists on the surface,
as predicted by B-T, (there is no reason to think othzrwise)

it points out a serious fallacy in the Kirchhoff assumption.

In order to evaluate the integral in Equation II-25, the
wave field at all points on the surface of integration had

to be known. This was accomplished, through the Kirchhoff
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assumption, by simply taking the wave field on the surface
to be the reflection of the incoming wave. This is equiva-
lent to a boundary condition which forces the diffracted
wave field due to the edge to zero at the surface of the
plate. When the solution is transformed to the time domain
(Equations III-6 and III-7) where the diffracted and re-
flected terms are considered separately, the diffracted
term must go to zero at 8 = 0° in order to satisfy the
imposed boundary condition. That this is clearly not the
case indicates that the H-K formulation should not be used
to estimate the backscattered wave field near the surface

of the plate. For forward scattering, the H-K diffraction

solution would also be expected to go to zero near the vlate.

Since Bremhorst's data [Ref. 12] show the presence of a
forward scattered wave at the surface, the above argument

can probably be applied to this case as well,
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VI, FINITE PLATE FORWARD SCATTERING EXPERIMENTAL RESULTS
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A. GENERAL

When a rigorous diffraction solution such as Biot-Tolstoy
is applied to the problem of diffraction by a real object,
one must be careful to ensure that the original boundary

conditions are applicable, For a finite barrier, two impor-

oy
s

tant considerations are whether the barrier is large enough

b

! to be considered infinite in extent and thin enough to ignore
3

{

thickness (the double edge). Since the geometry of the half-

plane diffraction problem is such that everything is described
i in terms of a cylindrical coordinate system with the origin
at the edge, there is a tendency to think of diffraction as
a3 simply an edge effect. This is the interpretation of the E
% H-K boundary diffraction wave. This is also the simplist

4 interpretation of a time domain, impulse solution such as

B-T, where it is easy to visualize an expanding spherical
wavefront intersecting the edge and reradiating acoustic
i energy as it '"propagates'" along the edge. If this were

generally true, one could solve any diffraction problem by N

describing the diffracting object in terms of a series of

o oy oo i

edges (or, more appropriately, wedges) and adding their con-
tributions. The problem with this approach is that the
original solution assumed the presence of a rigid surface

at some angles 8 = 0 and 6 = 6, extending to infinity in the
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radial and axial directions and an infinite fluid elsewhere
(see Figure 1). When the physical situation approximates this
condition, the diffraction problem can generally be treated
by considering a source at the edge. For an extreme example
where this is not true, one could consider the difference
between the diffraction due to a rigid half-plane and that
due to a large plate shrunk to become a thin wire at the
location of the edge.

A related problem conterns the treatment of barrier cor-
ners. Here the barrier may be "high" enough to consider the
radial dimension to be infinite but its width (the axial, or

z, dimension) is finite. A roadside billboard or a tall

building could be described this way. If the ground is
totally absorbant (no reflections) Medwin [Ref. 8] treats

the diffraction from this type of a barrier by adding the

4 S ek A e A, o

impulse response of each of the three edges, truncating the
solution for each edge when the wave reaches the corner, to
obtain the total time domain solution. The assumption
implicit here too is that the boundary conditions of the
theoretical B-T solution are sufficiently well approximated
by the actual barrier.

The third major difference between the theoretical B-T
solution and the actual barrier is the double edge caused by
the finite thickness. The theoretical solution is based on
a rigid, infinitely thin screen whereas the actual barrier

is often approximately rigid but of finite thickness.




I TR T

Some researchers have minimized this problem in their mea-
surements by placing a "knife edge'" at the top of the barrier
[¢cf. Kawai, Ref. 11] but this introduces additional sources
of diffraction where the face of the barrier changes angle.
In any case, the real barrier will always have some finite
thickness dimension and it is desirable to be able to calcu-
late or at least understand the nature of its effect on the

diffracted field.

A series of experiments was performed in order to define

these '"finite barrier” effects.

B. FORWARD DIFFRACTION AT A CORNER

Bremhorst [Ref. 12] showed excellent agreement over a
wide frequency range between the B-T infinite plate sclution
and pulse measurements on a 3/16" thick plate, provided the
pulse is sampled in such a way as to exclude late arriving
diffracted pulses from other edges. However, discrepencies
between measurements and theory of 5-10 dB were observed at
frequencies approaching 50 kHz with source and receiver near
the plate. The purpose of this experiment was to measure
the diffracted pressure field in the vicinity of the corner
of a plate and compare it to the field predicted by B-T
using Medwin's truncation approach. The present geometry
was chosen to ensure that only the edges intersecting at the
corner of interest would contribute to the measurements

(Figure 17).
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The source was placed at the coordinates (xs, Ygo zs)

of 25.5 ¢m, 8.0 cm, 8.0 cm, resvectively. Separate measure-

ments were made using the % and 1 inch sources to achieve

50,50 i sl

the widest possible frequency coverage. The receiver was

Lol S T it e R
o i el o i R R Ay

positioned along the x axis (yr = 0,zr = 0) at various points

e

between r = 3 cm and r = 45 ¢cm. This geometry was dictated

v T AT

by two considerations; source/receiver directivity and co-

herent interference. Source and receiver are both to be

e

,,..
it ke s

1 omnidirectional in the theoretical B-T solution. In order

to approximate this adequately, it was considered important

i i g I

Fl that the source appear omnidirectional when viewed from .
g; points along a significant portion of the edge near the {

corner. By orienting the source and receiver in this Way .

all points on the edge between the corner and the point where ;;
the least time path crosses the edge were within 2 dB of
omnidirectionality up to approximately 30 kHz. The symmetry :
of the geometry was chosen to eliminate the frequency domain
interference pattern created by taking the Fourier transform

of a time signal which has two coherent pulses separated by

a time delay. The geometry ensures that the diffracted pulses ;

from both edges arrive at the same time. This was accom-

plished by moving the receiver slightly to maximize the total .
pulse signal at the nearest and farthest ranges and locating
the intermediate measurement points on a straight line

between them. ©
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These considerations resulted in a geometry which was

somewhat artificial but would allcw a relatively simple analy-

| sis of the corner effect. The Fourier transformed diffrac-
ted pulse data for the 1" and %" sources are presented in

Figures 18 and 19 respectively. The free-field pressure at

a range of 28 cm (the distance from source to corner) was
Vx used as a reference pressure. Although the measured data
| using both sources show good agreement in the frequency .
region where they overlap, their dimensions are large encugh ‘

to be considered as an effect on the results and are there-

fore presented separately. The theoretical results from

truncating and adding the B-T solutions for the two

R et BB

perpendicular edges is also shown. The agreement between the
measurements and this superpcsition of the truncated

components of two cases of B-T theory is seen to be excellent

R TP
s L Ay

i across the entiie frequency region.

RE

The theoretical and measured results in Figures 18 and ;

el

19 also clearly show the effect of moving closer to the EE

-

shadow boundary. Because of the geometry shown in Figure 17,

PSRN SV

decreasing r also moves the receiver nearer to the shadow

Y S P

boundary. The theoretical solution as the receiver approaches

the shadow, is shown to approvach the delta function form

vk Saut b e’ ©

(Appendix A). The measured data clearly show this result,
as they approach a flat spectrum for small r, with the more

familiar f"15 frequency dependence observed at larger r.
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In Figure 20, these same measurements are presented as
diffracted pressure as a function of range (from the corner)

for selected frequencies, once again compared to the sum of

b b IR Y b o <L a2 L =

"truncated" B-T theoretical solutions. Also presented for

al bdaatiy vt

comparison are lines of arbitrary level with slopes of -10
log r (cylindrical) and -20 1log r (spherical). An apparent
source at the corner would be expected to radiate spherically

while an infinitely long edge would radiate cylindrically.

.
TN TP P! T T AR

Because of the geometry the ranges to the corner and to the §

point on the edge where the least time '"'ray'" crosses are
essentially equal so the data may be examined directly for

evidence of a spherical divergence from the corner.

1

'
1
i
B
g
1
4
4
1

The data, as well as theoretical results, of Figure 20
range from a slope of less than 3 dB per double distance -
near the corner, low frequency, to almost 6 dB per double
distance at the highest frequency and largest distance from
the corner. In terms of the dimensionless parameter kr 4
(wavenumber times range), it appears that the corner cannot
be characterized as a simple spherical or cylindrical source
for low values of kr. As kr 1is increase, the range depen- ‘.
dence gradually increases to avalue approaching 6 dB per
double distance. Although the results are somewhat incon-
clusive due to limited data, the two line sources, one at
each edge, begin to resemble a virtual. point source at

higher values of kr.
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An additional experiment was performed to better define
the difference between diffraction by an edge and diffraction
by a corner. The plate used in this experiment was identical
to that used for the corner (Fig. i7) except that the source
and receiver were set up on a long edge, as shown in Figure
21. As before, the measured data are compared to the B-T
calculated results (for a single infinite edge) in Figures

22 and 23. Unfortunately, the agreement between measurements
and theory is not nearly as good in this case as it was for
the corner. The reason for the significant deviation between
measurement and theory at higher frequencies and small ranges
is not known. Figure 24 presents a direct comparison between
corner and infinite edge results, as a function of range,
along with the appropriate B-T theoretical results.

From this comparison it can be seen that the diffracted
pressure field behind the corner is approximately 6 dB higher
than that behind a half-plane (single edge) for the larger
1anges and higher frequencies. As the recziver moves closer
to the plate, the difference between corner and single-edge
data decreases. Furthermore, there does appear to be a fre-
quency dependence in the difference between the corner and
edge at a given range. To better define this frequency
dependence and to estimate the effect of moving away from
the shadow boundary, a final experiment was performed.
Referring to the geometry of Figure 17, the receiver was

placed distances (r) of 18 and 32 c¢m from the corner on a
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line perpendicular to the plate (this is the same geometry as
the previous corner measurements), Measurements were also made

at distances of 18 and 32 cm from the corner on a 45° line

extending into the shadow region '"behind" the plate as shown
in Figure 25. As before, four identical measurements were
made along a single "infinite" edge for comparison. The
magnitude of the Fourier transformed data from the corner,
divided by the corresponding data from the single edge, are
presenfed in Figure 26. The upper two curves present data
taken on the perpendicular line while the lower two are taken

on the 45° line (deeper in the shadow). Also shown with the

: ; upper curves is the theoretical difference between the corner
and edge based on B-T. The general trend indicated by the
: upper two curves is one of less than a doubling of pressure
(due to line sources) at the lower frequencies, increasing
to slightly more than double the pressure at the higher
frequencies.

When the receiver is moved deeper into the shadow region,
the character of the ratio plotted in Figure 26 changes

dramatically, as shown by the lower two curves. The monotonic

¥
3
¥
!
M

k frequency dependence seen near the shadow boundary has been

% replaced by a more complicated dependence. The average value
K of the difference appears to be approximately 6 dB, even at

é the lower frequencies. The detailed frequency dependence

will be addressed in the next section. The general conclu-

sion to be drawn from Figure 26 is that the farther the
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receiver moves into the shadow region, the more the diffrac-
ted pressure field looks like the coherent addition of two
infinite edges, plus a small freauency dependent variation,

In summary, the measurements presented herein show that
the basic approach of adding impulse diffractions from each
edge in the time domain is valid. Near the corner, the
diffracted pressure is less than a simple addition of two
infinite edge diffractions. In this region, the approach
proposed by Medwin [Ref. 8], wherein the time domain solu-
tion is "'truncated" at the point where the edge wave reaches
the corner, estimates the diffracted pressure very closely
as shown by Figures 18 and 19. The usual treatment of the
corner as a source of spherically diverging diffracted sound
is not evident in the measured or B-T theoretical results,
at least over the lower range of kr presented. At high
values of kr, the results may be approaching spherical
divergence.

In the high frequency 1limit, Keller [Ref. 16] predicts
that the corner does produce spherically diverging waves but
that the resulting diffracted field decreases with increasing
frequency much more rapidly than the field produced by an
edge. This characteristic has been used as justification
for disregarding the diffraction at a corner when approaching
practical problems [cf. Ref. 17]. Figure 26 would seem to
indicate that radial distance from the corner and frequency

are not sufficient to determine when to disregard the effects

84

e lemees a e o el




e
[ .

M e e -
Al .

e o ol T SR P

of a corner; one must also consider the relationship of the
receiver location to the shadow boundary. The dimensionless
parameter implied in Medwin's truncation approach is kd where
d is the distance from the corner to the point where the
least time '"'ray" intersects the edge. No substantiation

for this parameter is offered ' here, however it does take
into account both distance from the corner and nearness to

the shadow boundary.

C. FORWARD DIFFRACTION BY A STRIP

The next experiment was designed to investigate the be-
havior of diffraction from an "infinite" strip of material
whose width was of the order of a wavelength. Two strips
were actually measured, with widths 10 cm and 4 cm. Given
the measurement capability of 1.5 to 40 kHz, these two strips
provided a total range of ka (a represents the width of the
strip) of 1.09 to 72.8. Source and receiver were located on
a perpendicular line through the center of each strip, as
shown in Figure 27a. The source was 14.5 cm from the strip
for all tests while the receiver was located at distances
from the strip of 9.5, 23.2, 39.5, and 59.5 cm in the case
of the 10 cm wide strip and 9.5, 23.2 for the 4 cm strip.
Once again, this geometry was chosen to eliminate the cohe-
rent interference that would result from different path

lengths around each edge. Identical measurements were also

performed on a single "infinite" edge as shown in Figure 27b.
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As long as linear superposition of edge effects holds, the
diffracted pressure at any of the measurement points will be
double for the strip compared to the corresponding plate
(single edge), since there is no truncation involved. With

this in mind, all data are presented as the following ratio:

P . diffracted pressure behind strip
rat diffracted pressure behind plate

When superposition holds, there will be a simple doubling of
pressure and this ratio will be +6dB at all freaquencies.

This ratio, calculated from the measurements on the 10
cm strip and corresponding plate, is presented in Figure 28.
The data are not presented above 30 kHz because of limita-
tions in the determination of the perpendicular to the strip
(i.e. the path lengths around the two edges could not be
equalized well enough to prevent cancellation effects above
this frequency). The oscillating pattern in the low frequen-
cy portion of the measurements is evident from Figure 28.
If this is interpreted as coherent interference between two
signals, two features can be extracted from the data. First,
this interference pattern does not depend on distance from
the strip/plate. Second, by estimating the spacing (in fre-
quency) between adjacent peaks or between adjacent nulls the
apparent path difference can be calculated from the relation
d =2 = C/Af in meters. From the data of Figure 28, d is

estimated to be 9 cm, quite close to the strip width of 10
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cm. To verify that strip width is the charanteristic dimen-
sion, the experiment was repeated for the 4 cm strip.

The 4 cm strip results are presented in Figure 29, The
strip width from Figure 29 data is estimated to be 4.1 cm,
confirming that the width of the strip is the factor deter-
mining the form of the "interference pattern'.

The data measured at 9.5 and 23.2 cm are averaged and

plotted as a function of ka for both strips in Figure 30.

For simplicity, the data from both 1 inch and 1/2 inch sources

were averaged in the overlappring region 6-10 kHz. Figure 30
clearly shows that the frequency dependence is directly re-
lated to the strip width a, with a ka spacing of 27 between
peaks as expected from a simple interference pattern.

The physical explanation offered for this interference
is called secondary diffraction or secondary scattering.
The application of secondary diffraction to the strip is
illustrated in Figure 31. The figure shows only the
interaction at one edge; the mirror image of the process
shown is occurring simultaneously at the other edge. The
solid lines in Figure 31 depict the path of the pulse as it
diffracts over the upper edge, while the dashed lines show
how the diffraction of the same puise at the opposite edge
generates signals on both sides of the strip which propagate
across the strip and diffract once again at the upper edge.
The doubly diffracted pulse arrives at the receiver at time

equal to the width (a) divided by the propagation velocity
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(¢) later than the initial pulse, resulting in the observed
interference pattern. This late pulse would have two dis-
tinct charr~teristics, arising from the additional diffrac-
tion, which are immediately observable in the measured data
of Figure 30. First, it will be considerably reduced in
amplitude relative to the earlier (single diffraction)
pulse. This is seen in the data as a weak interference
pattern (the peaks are approximately 6 + 1 dB compared to

6 + 6 dB if the two were of equal amplitude). Second, the
difference in amplitude between singly and doubly diffracted
pulses will be greater with increasing freauency since each
diffraction should increase the frequency dependence and
decrease the strength of the diffraction by approximately
f'llz. This causes the decaying amplitude of the interference
pattern with increasing frequency.

A method of calculating the secondary diffraction has
been proposed by M.edwin1 and implemented by Ms. Emily Childs.
The general description of the implementation which follows
is due to Childs.2 When a spherical pulse intersects an
edge, a boundary or edge wave is generated which anpears
to propagate along the edge. Calculating the B-T time domain
solutionin discrete time increments, this edge wave becomes

a series of discrete sources on the edge, each with a

1Personal communication to author from Dr. H. Medwin.
Personal communication to author from Ms. E. Childs.
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characteristic amplitude and phase. Extending this to a two

edge system (the thin edged strip in this case), these dis-

crete sources on the first edge (now called secondary sources)

each diffract at the second edge and contribute to the dif-
fracted field at the receiver. The proner amplitude is
assigned to each secondary source through a system of vir-
tual receivers located at the second edge. The phase of
each source is taken into account by performing the entire
calculation in the time domain. Figure 32 presents the
results of this theoretical calculation in terms of Prat for
each strip at a receiver distance of 23.2 cm., compared to
the measured data from Figure 30. Two theoretical curves
are presented for each strio; one which considers the
secondary diffraction on both sides of the strip (double
secondary path) and one which considers secondary diffraction
only on one side (single secondary path). Although the
double secondary path is the intuitively correct
interpretation, the measured data obviously agree with the
single path approach. One possible explanation is that in
using the double path interpretation, each path should be
reduced in amplitude by 1/2 (the diffracted pressures along
the paths on either side of the strip are of equal amplitude
but opposite sign). Keller [Ref. 16] describes a similar
phenomenon for the thin slit in an opaque plane using the

Geometrical Theory of Diffraction.

94

]
|




T o IR, " YT G S L e g e e T va
ey

P ¥ Ll o

*sd I35 wd QT pue % ayy
JOJ ey JO uotioung e se amam 1e9T38J09Y], pue paanseaj| JOo uostIeduwo) °2¢ aIndTJ

es|
Q2 Y2 (07 91 21 9 Ui 0 :
h+ m

1 1 4 LI L ¥ T i
L

=

(1X21 2389)

95

" wUied at8urs,,
w .hnoszGOﬁaowhmmﬁdh&ﬁﬁ:Oomm

wijed aiqnop,
$L109Yy] uOT}deXIITJ AXepuodas

BlRp paInsesjy

ap ut o4

- T T.— L L




e v e T T T TR ela o e S S e A

At this point it is also appropriate to point out that
the use of secondary diffraction in the preceding explanation
of the interference pattern would not be possible with the
Helmholtz-Kirchhoff approach, since the scattered or dif-
fracted field on the plate would be zero. There would be no
way the pulse could propagate between edges.

It appears that the sect.:dary diffraction explanation can
also be applied to the somewhat more complicated geometry of
the corner. Recalling Figure 26, there was a detailed fre-
quency dependence in the results, especially where the
receiver was deep in the shadow region (the lower curves of
Figure 26). Consider now a corner with one edge horizontal
and one vertical as shown in Figure 17. There will be a pulse
that travels from source to receiver by diffracting over the
horizontal edge. In addition, a pulse also diffracts at the
vertical edge, propagates across the plate near the corner,
and diffracts over the horizontal edge to the receiver.
Unlike the strip, the difference in path length of the two
pulses is a function of distance from the corner, an effect
which can be observed as a difference in the interference

patterns in the two lower curves of Figure 26.

D. FORWARD DIFFRACTIONS BY A THICKX BARRIER
The usual theoretical approach to solving the problem

of diffraction by a plate is to consider it to be an
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infinitely thin, rigid half-plane. However, a real barrier
which significantly attenuates the direct path of sound must,
of necessity, have a thickness which is a significant frac-
tion of a wavelength at high frequency. 1In Reference 12,
Bremhorst presented data which showed the diffracted pressure
at various points in the shadow of a 3/16" thick steel plate.
In particular, Figures 37 through 46 of Reference 12 showed
that the measured diffracted pressure was generally less
than that predicted by B-T, especially near the surface of
the plate (on the shadow side). Bremhorst attributed this
to the finite thickness of the plate. To confirm this
hypothesis, an experiment was performed using two barriers
of differcnt thickness.

The variable thickness was achieved by placing a piece
of aluminum stock of the appropriate thickness between two
3/16" aluminum plates and machining the resulting "edge"
smooth and square. Damping material was placed in the gav
between the plates to attenuate the direct path. An example
of the thick edge can be seen in the photograph of Figure
14. Thicknesses of 2.2 and 3.5 cm were evaluated utilizing
the geometry shown in Figure 33. Measurements were made at
® = 300° and 345°, where there was considerable disagreement
between Bremhorst's measurements and B-T theory. The measured
data are shown in Figure 34, compared tv the Bremhorst's

results and the B-T theory.
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Figure 34, Forward Diffracted Pressure as a Function of
Frequegcy for Various Thickness (t) Plates,
) r'rO' 25 cm,
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The data presented in Figure 34 indicate that barrier
thickness is an important parameter in determining the dif-
fracted pressure fieid, especially when the thickness is on

the order of < wavelength (10-15 kHz for the thick barriers
3

tested). It has been suggested by Medwin ~ that this thick-

ness can be handled by a secondary diffraction calculation
E‘ based on the B-T theory, as discussed earlier for the thin
F . strip, by considering the thickness to be a double edge.

This has not been verified at this time, although the thick-

ness does appear to explain the discrepancy between Bremhorst's

L{ data and the B-T theory.

E. FORWARD DIFFRACTION BY A BARRIER ON A RIGID BASE

A typical noise control barrier consists of a plane
screen or plate mounted perpendicular to a flat base, as
shown in Figure 35. The total pressure field at the receiver,
if it is in the shadow region, consists of the source signal
! arriving via multiple paths. The usual approach to solving
this problem is to consider that for the top edge there are
four geometrically distinct paths, each involving one
diffraction at the top of the barrier, made up of all possible

~ombinations of source, receiver, and images of source and

3

b LTI AN A SIS . O 4 g ORI oA 40T A g T

Personal communication to the author by Dr. H. Medwin.
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receiver in the base, as shown in Figure 35, Using the no- 5 ]

tation of Figure 35, these paths are denoted as SDR, S'DR, 3

SDR', S'DR'. It should be pointed out that S' and R' here

A ol s P i g b

are true images as used in optics and acoustics to describe
reflection from a plane surface. The term "image" is also
used by authors in the noise control field [cf. Ref., 5] in
conjunction with the "image of the source in the barrier",

as discussed in section II. This usage is considered here

s 8l il Lias 1t e b

to be inappropriate and will always be set apart by quotation i

marks ("image'") to prevent confusion with the more common

term (image).
To test the hypothesis that the four paths described §
above adequately characterize propagation from source to :
receiver in this case, a simple experiment was performed. i
A barrier with base was constructed of 2/16 inch aluminum ?
plate with an overall width of 120cm and barrier height of :
25 cm in the basic configuration shown in Figure 35. Source i
and receiver (both 1/2" B+K microphones) were positioned so
that each of the four paths would have a different length,
and each path would intersect the axis of the microphone ..
at approximately the same angle. This would allow at least
a qualitative comparison of the relative strengths of the
various paths. Use of the pulsed source of earlier experi- 7
ments would allow the identification, in the time domain, : :

of each path by its characteristic propagation time.
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Similarly, undesirable paths such as backscatter from the
edges of the finite base and diffraction around barrier sides

would have pronagation times longer than the longest (S'DR')

path of interest and could be eliminated in the time domain.

Tnc results of this experiment are shown in Figure 36,

compared to the calculated arrival times of each of the four

Y

paths., It is clear from these results that the four paths

constructed from the source, receiver and their images in

the base are the dominant caths in this basic barrier confi-

guration. If any other paths exist, they must be of rela-
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tively low level or coincide with one or more of the four

basic paths. The path due to the "image of the source in i

the barrier" as discussed by Isei [Ref. 5] would coincide

o il e e

with the SDR and SDR' paths of Figure 36. The relative
amplitude of the various paths also behave as expected, with

the later arrivals (longer paths) having 1lower amplitudes.

s s ke it

The strengths of the various paths were examined by
varying the geometrv slightly. By increasing the barrier
height to 42 cm and changing the receiver location (Figure

37), the separation in time between the paths was increased

engough to allow a separate spectrum analysis of each pulse. R
The data of Figure 38, taken with the source/receiver oriented
to insonify/receive both SDR and S'DR paths equally
(approximately), show the separation between the two pulses,

and the general trend in their amplitudes. As expected, the

S'DR pulse appears to be an exact replica of the SDR pulse.
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The actual strength of each path was measured hy "pointing"
the source in the direction of the path of interest (the re-
ceiver always pointed toward the edge, D) and Fourier trans-
forming only the received pulse corresponding to that path.
This was done for both the SDR and S'DR paths. The data,
normalized by the free field pressure at the receiver with
the barrier and base removed, (source/receiver pointed at
each other) are presented in Figure 39. Also nresented for
comparison are the B-T infinite half-plane theoretical results
for each path. The agreement between theory and measurements
shown in Figure 39 is excellent, indicating that the diffrac-
ted field at the receiver due to SDR and S'NR paths may be
computed separately, using the geometry of the source and the
imagz of the source in the base. The total diffracted
pressure at the receiver may then be obtained by adding the
contributions of each path.

It is important to note that the theoretical results in
Figure 39 were obtained from the complete form of the B-T
infinite half-plane solution. The complete theoretical
solution for the diffracted field at R in Figure 35 consists
of the sum of four terms. Isei [Ref. 5] apporoaches the same
problem by adding the contributions of six different paths,
as shown in Figure 3 of Reference 5. It avpears that he
has used the solution due to Macdonald in a form which is
separated into "real" and ''image" components as discussed in

section II and is applying these separately to the six paths.
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Figure 39 shows that the correct approach is to apply tle
complete solution (e.g. in Macdonald's solution this would 1

be the sum of the "real' and '"image' source components) to

TR

each of the four paths to obtain the correct diffracted field.

One need not consider the "image of the source in the barrier" :

because it is an integral part of the complete solution.

Gkl L i

In addition to the four paths described earlier, it is :

possible to have an additional path which propagates from

IR RRPMS

the source, diffracts at the intersection of the barrier and

u base B, then diffracts over the top edge of the barrier to

. the receiver, shown in Figure 40 as SBDR. This assumes a

- non-perpendicular intersection of barrier and base since

Tolstoy [Ref. 7] shows that there will be no diffraction from %

a 90° "interior" corner. The theoretical prediction of this

PERTLTY R

diffracted pressure at the receiver was approached in the

same way as for the thin strip, discussed earlier.

PEI

The geometrvy shown in Figure 40 was constructed of 3/16"

aluminum, as before, with the source and receiver located as
shown. The SDR and SIDDR paths (see Figure 40) can be seen

directly in the time domain in Figure 41. (The relative

TP P U S Y

amplitudes are only approximate due to source directivity.) i
Once again, the source was pointed toward the path of interest

and the received pulse was analyzed separately. The frequency

é ) spectrum of the SBDR nulse, normalized by the direct, free-

field pressure, is shown in Figure 42. Also shown is the

i
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Figure 41, Received Time Domain Signal Due to the SDR
and SBDR Paths (Geometry of Fig. 40).
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Figure 42, Diffracted Pressure as a Function of Frequency
for the SDR and SBDR Paths Compared to the B=T
Theory and Secondary Diffraction Theory,
respectively (Geometry of Fig. 40).
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theoretical result from the secondary diffraction program.
For comparison, the SDR path data and theory from Figure 39
are also presented. (The SDR geometry is identical to the
previous experiment.) The additional diffraction in the

SBDR path is seen in the data as a different frequency depen-
dence as well as a lower overall level. When the B-T theory
is used as a basis for secondary diffraction, there is

excellent agreement with the measured data.
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VII. CONCLUSIONS

The exact impulse diffraction solution of Biot and
Tolstoy (B-T) has been compared to the exact (W diffrac-
tion solution of Macdonald for forward scattering and to
the impulse solution to the Helmholtz equation (H-K) for
backscatter using the Kirchhoff approximation. For back-
scatter from an infinite edge, B-T and H-K have been found
to reduce to a similar although analytically different time

domain. form. Comparison of B-T and H-K in the frequency

domain showed substantial disagreement, except for geometries
where the diffracted pulse was close to the reflected pulse
in time, where both solutions approached the same value.
Backscatter near the plate was found to be grossly under-
estimated by the H-K solution, due to the boundary condition
used by Kirchhoff tn simplify the integral. The backscattered
pressure near the surface predicted by B-T was confirmed by
laboratory measurement.

Macdonald and B-T solutions for forward diffraction from
a plate were both found to be in good agreement with the
experiment. Both solutions can be expressed as the sum of
a term containing the source/receiver angles as (9-665 and a
term containing (8*8,). These terms were originally identi-
fied by Macdonald as the '"real" and "image' source terms.

The concept of "image of the source in the barrier", as used
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in the noise control literature, is found to be a mis-
interpretation of Macdonald's solution. For a barrier on
a rigid base, the diffracted pressure due to the real source
and the true image source (the image of the source in the
base) were measured separately and both were found to agree
with the complete (both e-eo and 8+8, terms) B-T solution.
The solution of finite barrier problems was found to
be facilitated by the time domain, impulse nature of the B-T
solution. Measurements of forward diffraction near a r'ate
corner show that Medwin's proposed approach of trunca.ing
the B-T time domain solution to account for the corner accu-
rately predicts the diffracted field. Experimental results
do not agree with simple spherical radiation from the corner
over most of the range of kr between 1 and 150. Limited
data do show a trend toward spherical divergence as kr
approaches 150. Measurements of the forward diffraction by
a thin strip confirm the presence of secondary diffraction,
i.e., waves that first diffract at one edge, propagate across
the surface of the strip, and diffract again at the other
edge. The time domain B-T solution is shown to be a useful
starting point in characterizing this secondary diffraction.
At high frequencies, forward diffraction loss by a plate of
finite thickness is found to be considerably greater than
the theoretical prediction, for an infinitely thin screen.
It appears that this may also he explained by the double
edge creating secondary diffraction with an additional

diffraction contribution at the second edge.
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APPENDIX: A

APPROXIMATiON OF THE BIOT-TOLSTQY SOLUTION
~NEAR_THE SHADOW BOUNDARY

Since the B-T solution is a delta function impulse soclu-
tion, it is expected that it will approach the deltsz function
form for limiting cases where the receiver is aporoaching
the boundary between "illuminated" and "shadow' regions,
herein referred to as the shadow boundary. As this limit is
approached, the early time portion of the diffracted pulse
will increasingly dominate the solution, creating a difficult
numerical calculation problem. To better understand this

problem, the solution will be approximated for the following

conditions:

A. 8, = 2r (thin plate)

B. 8 = 90 + ™+ ¢ (receiver in the shadow region, ¢
small)

C. t -1-0 from the positive side (early
0 diffracted pulse)

For ew = 21, the complete solution can be written as

. 1
p(t) = - §2% {B}[rro sinhY] [exp(-Y/Z)] (A-1)
8t
where
- c?t? - (r? + rp? + 2?)
Y = arg cosh [ L = ]

and 8 is a four term sum written symbolically as
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. sin[%’(‘"iﬁieo)]

1 - 2exp(-3Y)cos[5(r£820,)] + exp(-Y) (A-3)
For the early diffracted pulse

At =t - ro*O
Medwin [Ref. 8] shows tha: when $£<<1, the factor containing
[}
sinh Y can be approximated as

1
. -1 2 -
(rr, sinh Y) "= (2 t_c’rr)) Zz

(This same result for the specific case of backscatter was
shown in section III.) This factor goes to infinity as At

approaches zero and is generally assumed to be the factor

that determines the time dependence of p(t) under these
circumstances. Time depe;idence also enters A-1 through the
; . exp(-Y/2) term but this will be ignored because this function
| only varies between 1 and zero and is relatively constant
for Y (and therefore At) approaching zero.

The 3 term convains both time and geometry dependence in
‘ g a rather complex wav. The aprroach here will be to separate

: +he 8 into four terms and examine each one in the iimit as

both Y and € approach zerc. (Y is directly, although not
linearly, related to At. The exvansion of arg cosh is not
trivial and so the limiting procedure here will be with

respect to Y rather than t.) The R term can be written as

L RE I T SR T Sty

(B,, *B,. +8__ +B__) with the subscripts referring to the

various combinations as shown in Table (A-1).
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TARLE A-1

COMBINATION OF SUBSTITUTION
*, 6, 0

OF

0 m @ + M+
0 0 €

. _

T+ R + eo 2w + 26o + ¢ §

Tee -8 2r + ¢ ;

8., T -0 08 -€ ?

8 T -6 -8 ~(26° + ¢)

ek o
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Using the usual, first order approximations for sine and
cosine of small angles, these terms can be approximated by

the following

sin eo + ¢/2 cos eo

Bes ¥ °
1 +2 exp(--'Y/Z)[coseo - €/2 sin 6°] + exp(-Y)
>
B,. % - &:
{ 1 + 2exp(-Y/2) + exp(-Y) (A-4) |
€/ i
B 2 ° Z j
1 - 2exp(-Y/2) + exp(-Y) ;
8w - sin 85 + €/2 cos 9, ?

‘ 0T 1 - 2exp(-Y/2)(cos o  + €/2sin 8.) + exp(-Y)

With these first order approximations, the behavior of

each B term can be examined at Y = 0

sin 85 + €/2 cos 9,

Bosl, @
. Y=( 2(1 + cos & - €/2 sin 0)
; o 0
| 8 | s . _sin 8, + €/2 cos 84
- - = 2 - - € 3
Y=0 2(1 - cos 8, €/2 sin 6,)
8, | - =
*T y=0 §
8_.I 2 (denominator goes to zero) &
Y=0

From this first order analysis, it is seen that three
of the four B terms have the potential of dominating the
p(t) solution at small values of Y. These terms will now be i
examined to second order in the denominator. (The numerator

contains no difference terms and so the first order
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approximation for small ¢ will be retained for simplicity.)
Considering 8__, the following approximations are used
cos (-%/2) = 1 - %i
Yz
exp (-Y) 21 -Y + v
to obtain

2€
-d
Neglecting terms higher than second order in the small

quantities Y and ¢,

2e
Y2 + €2(1-Y/2)

Boe ¥ - (A-5)

which approaches a finite value as Y approaches 0,

lim B
Y=+0

[ ]
[
M

Using an identical approach yields the following results

for 8,, and 8 __
. €/
lim & L sin ao + 2 cos eo (A-6)
++ 2
Y+0 2(1l+cos 8 _ + €/8 cos 8 - £/2sin 6 )
0 0 o
sin 8+ €/2cos 8
lim 8__ = - 2 g
Y+0 2(1-cos 8 _ + e?/8cos 8, -~ €/2sin 8 ) (A-7)

A detailed analysis of the 8, _ and 8__ terms was not

done, however, they assume the following maximum values at

Y = (:
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at 60 w3 Y=

Miro

at 90 - 0; Y =0

Since these limiting values are the same as for the 8__ term
and will be less for other values of 8, it is concluded that
the 8__ term will dominate 8 for the early diffracted pulse.
For comparison, the (rrosinh Y)'l term cen also be
approximated for Y approaching zero as
1 Y?

. ) 1 -1 1
(rr_sinh Y) a2 ——(Y + + ) ¥ (A-8)
o Y, 6 ... rrdY

C.mparing Equations A-8 and A-5 leads to the conclusion that
the rrosinh Y factor will determine the time dependence of
the early diffracted pulse only when €? is much greater than
Y? and Y is much less than 1.

In terms of the basic diffraction problem geometry, this
means that as the receiver approaches the shadow boundary
from inside the shadow (¢ approaches zero), the time region
over which the (rr sinh Y)'1 factor will determine the time
dependence of p(t) becomes very small. This region must be
determined, based on the geometry, before an analytical plus

digital approach such as outlined by Medwin [Ref. 8] can be

employed. This is illustrated in Figures A-1, A-2 which show the

behavior of (sinh Y)'l and B__ as a function of Y for two

*
values of €. Since the B-T solution contains the product of
these terms, one can be assumed to be the factor which deter-

mines the time dependence only when the slope of the other
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f ' 90' 72_050
ry® 26,7 cnm
r * 10,2 cm

e = 189

-p (sinh 7)1

Linear Amplitude

Figure =1 Behavior of thg B-T Solution Near the Shodow
Boundary, £=18".
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approaches zero. Based on this, the (sinh Y)'1 term would
dominate below approximately Y = .1 for € = 18° and below

Y=,01 for ¢ = 4.2°.
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